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LE'ITER TO THE EDlTOR 

On Miura transformations of evolution equations 
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Institute of Physics, Academy of Sciences, F Skoryna Avenue 68, Minsk 72, Republic of 
Belarus 

Received 4 February 1993 

Abstract. The general Miura transformation ( f ,x ,  u ( s x ) ) - ( ~ ,  y, "(4 y)) :  U =  
a(<  x, U,. . . , a'u/ax'), y = b(r, x, y . . . , a'u/ax'), s = e(< x, U,. . . , a'u/ax') is considered 
which connects two evolution equations ut = f ( t ,  x, y . . . , a"u/Jx") and vs = 
g(t. x, y . , , , a"u/axm). The conditions c = c ( t )  and m = n are proven to be necessary. It 
is shown that every Miura transformation, admitted by a wnstant separant equation U, =/, 
consists of the following three transformations: (i) ( I , %  U)+(& x, w) ,  where w =  
E(<  x, U,. . . , u ~ , . , ~ ) ;  (ii) (4 x, w ) -  (r. y, U), where y = x  and U =  w, or y = w and U =  wx, or 
y = wx and U = wu ; (iii) a transformation of time s = e ( t )  and a wntad transformation of 
(y. U). As anexample,the Korteweg-deVriesequationistransformedtothree new nonlinear 
equations, of which two have neither non-trivial algebra of generalized symmetries nor 
infinite set of conserved densities. 

Transformations of nonlinear partial differential equations are very important to 
modem mathematical physics [2]. Being a generalization of point and contact transfor- 
mations on one hand and a special case of Backlund transformations on the other 
hand, Miura transformations ( M T ~ ) ,  also referred to as equivalence transformations 
and differential substitutions in [2,3], have numerous applications, especially to studies 
of nonlinear evolution equations (EES). Very often, a newly-found remarkable EE turns 
out to be nothing but a well studied old EE spoilt by a MT or a chain of MTS [4-71. 
MTS make it possible to deduce certain algebraic and analytic properties of a new EE 
from such properties of the corresponding old EE [Z, 8,9]. A chain of MTS generates 
a Backlund transformation [lo-121. Finally, and this point should he stressed, MTS are 
applicable not only to completely integrable EEE [3,9,12]. 

Recently, Kingston [ 131 investigated the structure of the point transformation 
( t .  x, u( t ,x ) )+ (s ,y ,  u ( s , y ) ) :  U =  a(t, x, U), y =  b(t ,  x, U), s = c(t, x, U )  between two EES 
U, =f(t, x, U, U,, . . .) and U, = g(s, y ,  U, U,, . . .) and proved the following two theorems: 
(A) the time transformation must necessarily be of the form s = c( t ) ;  (B) i f f  and g 
are polynomials in derivatives of U and U, then the condition b = b( t ,  x) is necessary 
too. These theorems can simplify calculations essentially. However, Kingston's 
theorems deal with point transformations only, and one would like to know whether 
(A) and (B) describe the structure of more general transformations as well. It is easy 
to see that (B) is not applicable to MTS: the Ibragimov transformation [14] U = U,, 
y = U, s = t connects the polynomial EES U, = U, and U, = u2uvu. As for (A), the literature 
contains no example of a MT with s # c(f), and the validity of the theorem for MTS 

(and for contact transformations as well) will be proven in this letter. We will also 
prove a theorem which describes the structure of MTS admitted by constant separant 
EES. The results will be illustrated by an example. 
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Let us consider the general MT [2] (t ,  x, U( t, x)) + (s, y, v(s, y ) ) :  

v = a ( t ,  5 U, U!,. .., U,) 
Y = ~ ( L ,  5 11, ~ 1 , .  . . , U,) 
s = c ( t , x ,  U,U1,.. .,U,) 

(1) 

which maps all solutions U of the EE 

U, =f(t,x, U, U1 I . .  . , U") 
to solutions v of the corresponding EE 

v * = g b ,  Y ,  U, VI,. . . ,U,) (3 )  
where functions a, 6 and c are functionally independent, uk = aku/dxk and U, = dkvv/dyk 
(k=l ,2 , . .  .),af/Ju.#O, J g / J v , # 0 , [ J a v / J u , ~ + ~ J b / J u , ~ + ~ J ~ / J u , ~ # 0 .  (Note: t-deriva- 
tives of U are not involved in (1 )  without loss of generality, because U satisfies (2).) 
As a rule, transformation (1) is not invertible, i.e. U, x and f depend on U, y and s 
non-locally. The only exceptions are point transformations ( r  = 0 in ( 1 ) )  and contact 
transformations ( r =  1 in ( 1 )  under certain restrictions put on a, b and c )  [2]. Every 
EE admits point and contact transformations and generates in this way its ow'n class 
of mutually equivalent EES. Since all first-order EES are mutually equivalent [2], we 
put n >  1 hereafter. It is easy to see that MT (1) connects EES (2) and (3),  i.e. (1) maps 
all solutions of (2) to solutions of (3), if, and only if, functions a, 6, c,fand g satisfy 
the following condition: 

9$a =g(c, 6, a, 9,a,. . . ,9d,"a) (4) 
where = d- ' [ (9&)9 ,  -(9,6)9,], By = d - ' [ ( 9 , c ) 9 ,  -(9&)9,], d =  
(9a ,b)9 ,c - (9&)9,6 ,  d#O due to functional independence of 6 and c, 9,= 
&+I& uk+,Jx, 9, = J,+E?=o (5%: f Id,, J, =a/Jx, J, =J/Jt,J, =J/Ju, (k=O,  1,2, ,  . .), 
uo = U. (Note: (4) must be an identity in t, x, y U,, uZr.. . , because it should not be an 
ordinary differential equation which restricts solutions U of EE (2).) Analysis of 
condition (4) will allow us to prove the following. 

Theorem 1. If MT (1) connects E E ~  (2) and (3), and n > 1, then c = c ( t )  and m = n 
necessarily. 

Sketch ofproof: Suppose m S 1. Bring (3) to the form v, = 0 by a contact transformation 
of (s, y,  U). Derive from (4) that transformed a and b are functionally dependent 
(if n > 1) in contradiction with independence of the original a, b and c Suppose 
m > 1. Consider the balance of higher-order derivatives U, in the left- and right-hand 
sides of (4). Calculate that J,+n9ya = -d-*e(9&)J.f and J,,.B,a = d-*e(9,b)Jnf; 
where e = (J,a)[ (9&)9,c-( 9,c)9,6] + (J,b)[( BSc)9,a - ( 9xa)9,c]+ (a,c)[ ( 9xa)9,6 - 
(9>)9,a]. Let e9xc # 0, i.e. a,+.9,.a # 0, and show contradictoriness of (4) due to 
J,+,.9Ya#O and J,,,.93a=0. Let 9,ci.O and e=O, and derive from (4) that 
J W a = O  ( k > r + n )  and J&a=O ( k > r , l = l ,  ..., m-1); take the system of 
identities e= 0, dk9ya = 0 (k > r )  and J,+.%'$a =0, and show that the system is com- 
patible only if a, b and c are functionally dependent. Consider the last possibility: 
Ba,c = 0, i.e. e = c ( t ) .  Let e # 0, and find the orders (in U,) of the left- and right-hand 
sides of (4) to be r + n  and r + m  respectively, i.e. m = n .  Let e=O (the case of 
so-called degenerate MTS [ 3 ] ) ,  and find the same orders to he r +  n - 1 and r +  m - 1, 
i.e. m = n. 0 

y . .  
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Since the order r was not fixed, the proven theorem is valid for MTS of any order 
as well as for point and contact transformations. The necessary condition c = c ( t )  
simplifies a search for admissible MTS essentially. h e  change of time r + s: s = c(f) is 
applicable to any EE and needs no further consideration. Therefore we put c = f in 
( l ) ,  and condition (4) takes the form 

Since variables t, x, U,. . . , U,+. must be considered as independent in (S), we can 
differentiate (5) with respect to these variables and thus get new (only necessary) 
conditions which simplify the analysis of the necessary and sufficient condition (5). 
Taking J,,, of ( 5 )  if e = (J,a)BXb - (J,b)?&a # 0 (non-degenerate MTE), or taking 
of (5) if e = 0 (degenerate MTS), we find 

(BXb)"F(t,  x, U, U , ,  . . .) = G ( f ,  b, a, ( 9 & - ' 9 x a , .  . .) ( 6 )  
where F and G are the separants of E E S ' ( ~ )  and (3) respectively, i.e F ( r , x ,  U,. . .) = 
Jf/Ju, .and G(t, y ,  U,. . ,) = Jg/Ju. .  Necessary condition (6 )  is very informative. For 
example, let both EFS (2) and (3) have constant separants. In this case, BXb = (Y = 
constant # 0 due to (a) ,  i.e. y = a x + u ( f ) .  Up to such a transformation of x, every MT 
between two constant separant EES is U = a( f, x, U, . . . , U,) ,  y = x, s = t, and the necessary 
and sufficient condition (5) takes the form 

9 , a - ( 9 ~ b ) - ' ( 9 ~ a ) 9 ~ b = g ( t ,  b, a , (9xb) -19xa , . ' .  . , [ (9xb) - '9x ]"a) .  (5) 

9 , a  = g ( t ,  x, a, BXa, .  . . , 9 : a ) .  (7)' 
Namely, this kind of MTS has numerous applications. Owing to the simplicity of (7), 
even a classification of such MTS is possible for low-order EES [15]. However, more 
general MTS with 92 #constant are required, when one intends to connect a constant 
separant EE with a non-constant separant EE [2,7,14]. The following theorem describes 
the structure of MTS in a very general case, when the only restriction F = 1 is imposed 
on EE (2). 

Theorem 2. Every MT (l), admitted by EE (2) of the form U, = U ,  + f ( t ,  x, U,. . . , un-]) ,  
consists of the following three transformations: (if (E, x, U) + ( t ,  x, w(f ,  x ) ) ,  where 
w = Z ( t , x , u  ,..., u ~ . , ~ ) ;  (ii) ( f , x , w ) ~ ( t , y , u ( f , y ) ) ,  where y = x  and u = w ,  o r y = w  
and U = w,, or y = w, and U = w,; (iii) a transformation of time s = c ( t )  and a contact 
transformation of (y, U). 

Sketch ofproof: Assume a,a # 0 without loss of generality. Put F = 1, and get from (6)  
that the maximal order of G (in ok) is 2 for degenerate MTE and 1 for non-degenerate 
MTS. In the degenerate case, represent a as a = h(r ,  x, U,. . . , u , - ~ ,  b ) ,  a,h+ 
2;:; uk+,Jkh = 0,  and get from (6)  that JZh/ab2 is a function of 1, b, h and Jh/Jb only. 
Prove that a contact transformation of ( y ,  U )  exists which changes the degenerate MT 
to a non-degenerate MT of order r - 1.  Consider the non-degenerate case. If G = G( f, y ) ,  
make G = 1 by a transformation of y, and then take b = x (without loss of generality) 
due to (6 ) .  If G = G(t,  y, U) or G = G(t,  y, U, q), make G = U" by point or contact 
transformations of ( y ,  U), respectively, and then take a = Bd,b due to ( 6 ) .  (The sub- 
sequent part of proof is independent of the restriction F = 1.) Consider the MT s = t, 
y = b( t,  x, U,. . . , u,-~), U = BXb. Substitute a = 9,b to (3, and prove the existence of 
q ( f ,  x, U,. . . , U?-?) such that 9 , b  - qBXb is a function of t, b, %b,. . . , 9 : b  only and 
9& is a function h( t ,  b ) .  Let ah/Jb =0 ,  and find 9 , b  = g'(r, b, . . . , 9 c b ) ,  i.e. EE (2) 
admits the MT w ( t , x ) =  b( f ,x ,  U,. .., u , - ~ )  due to (7). Let Jh/Jb#O, make b = 9 &  by 
a point transformation of (y ,  U), and find 9,q = g"(f ,  q, . . , , 9:q) ,  i.e. EE (2) admits 

0 the MT w (  t, x )  = q( r, x, U, . . . , u,J due to (7). 
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The proven theorem indicates exceptionality of the Ibragimov transformation y = U, 
U = U, and the unnamed transformation y = %, U = U, which map constant separant 
EES U, = U. +. . . to non-constant separant EES U, = u"v. +. . . . For convenience of 
application, we can find from (5) the following complete classes of EES connected by 
these remarkable MTS: 

u , = a u l x + u , p ( t , u , u l , u ; ' ,  u2 ,..., (U;'~~)"-'U,) 
y =  U u = u l  (8) 
v , = a u + u ~ a s p ( r , y , u , u ,  ,..., Un-J 
U, = (au, +p)X+(Fl+ S ) u  + p ( t ,  U,, u2, u; 'u3 , .  . . , (u; '9x)"-2uz) 

y = u 1  U = u2 (9) 
U, = (201 + S + 3yy)u - [ p  + (01  + S ) y  + "/Y21Ul + V%?P(t ,  Y,  U,  V I , .  . . , U.-J 
where functions p,  a ( t ) ,  /3( t ) ,  y( t )  and S ( t )  and order n are arbitrary, a,= 
a/dy+Z?=o uL+la/au,. Now, let us see how theorems 1 and 2, condition (7) and classes 
(8) and (9) work. 

Example. Let EE (2) be the Korteweg-de Vries equation (mv) U, = u3 + u u I .  What are 
admissible MTS (1) and resultant EES (3) in this case? (Note the difference: here the 
Kdv itself is mapped to other €Er, whereas the original MT [I]  maps the modified Kdv 
to the KdV.) The order of the Kdv is 3, therefore theorem 1 demands c = c(  t )  and m = 3, 
and we may take s = t. The separant of the Kdv is 1, therefore we can use theorem 2 
instead of direct analysis of condition ( 5 ) .  According to point (i) of theorem 2, we 
need to Bnd all MTS of the form w(t ,  x) = a(t, x, U,. . . , U,) Brst. We have G = 1 due to 
(6), then a,+2 and a,, ,  of (7) give us a system of two conditions which is incompatible 
at r>O. Thus, only point transformations w = ~ ( t ,  x, U )  are admissible. Proceeding to 
point (ii) of theorem 2, we make the transformation w =  a(t, .x, U) of the Kdv, compare 
the obtained EE w, = w,+. , . with the classes U, =. . . of (8) and (9), and find that 
the Kdv admits the MT y = w, U = w, after w = q ( f ,  U + W ' x ) ,  where rp is arbitrary and 
h=O or 1 ,  and the M T ~ = w , ,  u=w, after w = p , ( t ) u + v ( t ) x + p ( t ) ,  where p,, Y and 
p are arbitrary. The resultant EES U, =. . . of (8) and (9) contain these arbitrary functions 
too, but we eliminate the arbitrariness by point transformations of (y,  U); we make 
also a time transformation in the case A = 1 for removing I from the right-hand side 
of the resultant EE. Consequently, up to arbitrary contact transformations of ( y ,  U) and 
time transformations s-f c(s), there are only three EES which the Kdv U, = U,+ uu, can 
be mapped to by MTS, namely: 

s = t  v = u  

s =-$In ( i t )  

U, = v3v3+ 3 U Z V l V ,  + v 2 -  yu, + 3 v  

U ,  = u~v,+3u'U,uz- yzu, + 3 y a  

y = ( 3  f )2'3( U + t - ' X I  U = -3 t (u ,  + t P )  
(11) 

(12) 
s = t  Y = u l  v = uz 

In conclusion, let us focus our attention on the obtained EES (10)-(12) and consider 
them from the standpoint of so-called integrability criteria. EES (10)-(12) fail to pass 
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the Painlevi test formulated in [16]. EE (10) has an infinite algebra of generalized 
symmetries with therecursion operator R = u 2 9 : +  u o 1 9 ~ + 2 u u 2 + ~ y + ( u 3 ~ 3 - t 3 ~ 2 u , v 2 +  
u * ) 9 1 , ’ ~ - ~ ,  therefore (10) has an infinite set of conserved densities which can be derived 
from the symmetries (consult e.g. [3] for the technique). As for EES (11) and (12), they 
have neither non-trivial algebra of generalized symmetries nor infinite set of conserved 
densities. Indeed, EES (11) and (12) have the separant G = u3, but the quantity G-”“ = 
U-’ is not a conserved density for them; therefore these EEI can possess neither one 
generalized symmetry of order k, k > 3  [2] nor two conserved densities with the 
characteristics of orders k and I,  k > [ > 4  [17]. Thus, being nothing but the Kdv 
transformed, EES (11) and (12) look like non-integrable equations from the standpoint 
of best integrability criteria! Therefore, facing an equation which seems hopeless, but 
having the technique of MTI, we must not lose hope. 

This work was supported by grant @2-023 of Fund for Fundamental Research, Republic 
of Belarus. 
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